ELLIPSE & HYPERBOLA

TANGERIS F NORMAL

Equation OF AN ELLIPSE - An ellipse is E Locus of a point who moves in a plane such that its fistance from a fixed point bears a constant ratio to its fistance from a fixed line and this ratio

D

An Ellipse is the set of points in a plane, the sum of whose distant ion two fixed points is constant. Alternatively, an ellipse is set of all points in the plane whose distances from a fixed point in the plane bears a constant ratio, less than, to their distance in the plane bears a constant ratio, less than, to their distance in a fixed line in the plane. The Axed point is called focus, the fixed line a direction and the constant ratio (e) the contained of the Ellippe.

we have two standard firm of the ellipse, he.

(1)
$$\frac{x^2}{q^2} + \frac{y^2}{b^2} = 1$$
 \ddagger (11) $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$

'n both cases $a > b \neq b^{2} = a^{2}(1 - e^{2}), e < 1$.

in (1) major ascis is along sc-ascis & miner along y-ascis & in (1) major ascis is along y-ascis & miner along sc-ascis as slown belo

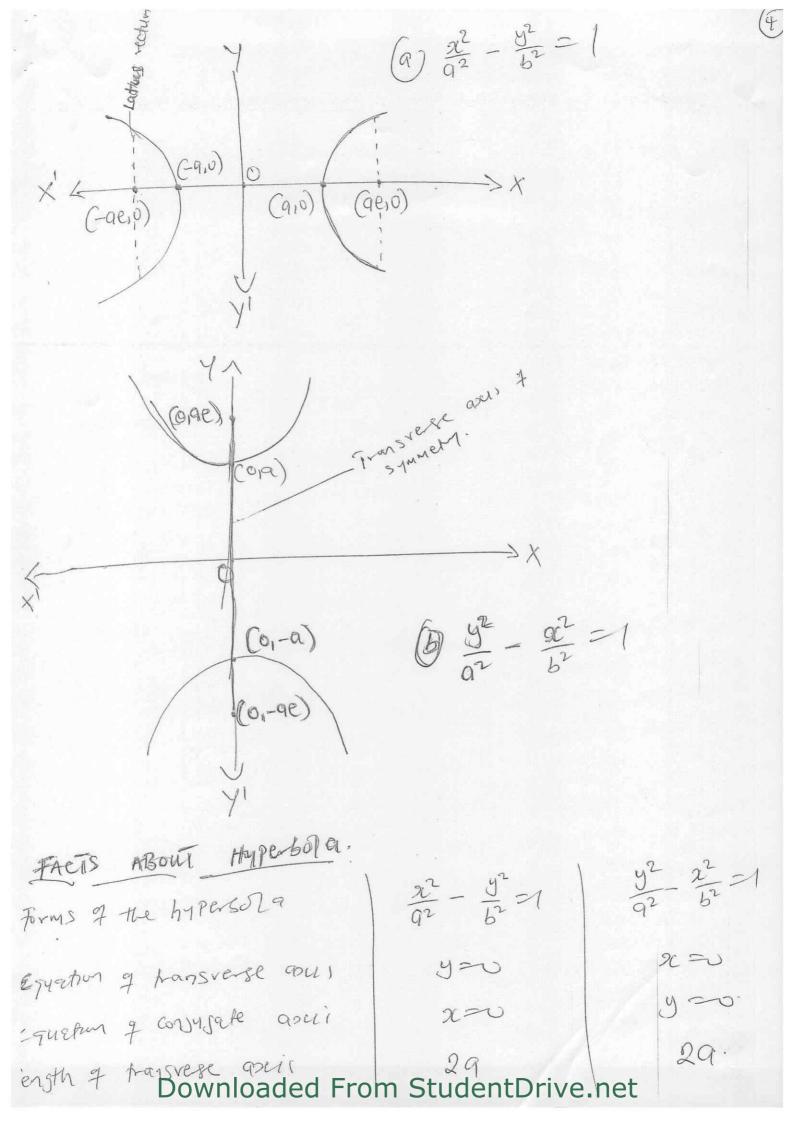
mmer asell (0,a) majer osi major asi PEUS) (o,ge) F2(90,0) (910) x FEGEIO) 0 (610) (Faio) (C-bio) (orae D -Directrices (O1-a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{2^2}{b^2} + \frac{y^2}{a^2} = 1$ FACTS ABOUT ELLIPSE (b) $\frac{y^2}{12} + \frac{y^2}{a^2} = 1$, a) l 22 + y = = 1, Q>6 FORM of the Ellipse 20 guels of major asis 4=0 29 29 gocii ensth 7 major y20 220 miner acti =juation 26 26 minor azi Length 7 リニナを x=ナ学 strectices ystal 9c= +9e quatur of latus rectum 26 25 enster of latus rectum (0,0)(0, 0)ientre (o, tae TGP,0 Foc 1 Downl StudentDrive.net oaded

Fich DISTANCE - The foreal distance of a point (Sury) on the (3) subject $\frac{x^2}{4z} + \frac{y^2}{5z} = 1$ is q - e|x| from ϵ nearer froms q + e|x| v = father focus

Sum q the focal distances of any point on an ellipse is constant q equal to the length of the major axis.

HupperBola: is the set of all points in a plane, the sufference : shose distance from two fixed points is constant. Alternatively, a perfola is the set of all points in a plane whose fistances from a Fried point in the plane bears a constant ratio, greater than o 1), to their distances from a forced line in the plane. The fraced pon s called a focus, the fixed line a direction of the another return servited by C, the ecentricity of the hyperbola. se have two standard firms of the hyperbola, i.e., $f(1) = \frac{y^2}{a^2} - \frac{z^2}{b^2} = 1$ $(1) \quad \frac{\chi^2}{6^2} - \frac{y^2}{6^2} = 1$ Here $b^2 = a^2(e^2 - 1), e > 1$ 1 (1) pansverse azis is along 20-azis \$ conjugate azis along y-azi shee as in (11) transverse axis is along y-ascis & conjugate axis alon

:- add S.



For
$$1$$
 $(2 + ae_1 o)$ $(0, \pm ae)$ (5)
Equation $\pm 1ap_{15}$ rectum $x = \pm ae$ $y = \pm ae$
Noth $\neq 1ap_{15}$ rectum $\frac{2e^2}{3}$. $\frac{2k^2}{9}$.
Noth $\neq 1ap_{15}$ rectum $\frac{2k^2}{3}$. $\frac{2k^2}{9}$.
Note the bistance π the focal distance π and point $(2w_1)$ on the
Norder $\frac{2k^2}{3}$. $\frac{4k^2}{5}$. $\frac{4k^2}{5}$.
 $e|x| + q$ from $-farther focus:$
 $gain and equal to the length q the transverse axis:
 $2h^2$.
Note the stumpse with equation $qx^2 + 25y^2 = 225$, find the major
 $now axes, eccentricit: foci $\frac{1}{2}$ vertices:
 s_{14} .
Noting the such eq π in standard from , we have $[\frac{1}{2}$ based $h/22$
 $\frac{2k^2}{25} + \frac{9}{7} = 1$.
Noting the such eq π in standard from , we have $[\frac{1}{2}$ based $h/22$
 $\frac{2k^2}{25} + \frac{9}{7} = 1$.
Noting the such eq π in standard from , we have $[\frac{1}{2}$ based $h/22$
 $\frac{2k^2}{25} + \frac{9}{7} = 1$.
Noting the such eq π in standard from , we have $[\frac{1}{2}$ based $h/22$
 $\frac{2k^2}{25} + \frac{9}{7} = 1$.$$

Since the Lenomination
$$q z^{2}$$
 is larger; the major odd is along (
 $2 - axis innow axis along $y - axis$;
 $for circle (2ae_{10}) \Rightarrow 1(S + \frac{y}{5}) = \frac{1}{2} + c$
 $\Rightarrow (y_{10}) \ddagger (-y_{10})$;
and vertices $\Rightarrow (-a_{10}) \ddagger (a_{10}) \Rightarrow (-5_{10}) \ddagger (5_{10})$
EA2.
Find the epurchis q the chapter with fice of (25_{10}) $\ddagger z = \frac{6}{5}$, as on
 q the directorice;
sola.
we have $ae = 5 \ddagger \frac{6}{5} = \frac{6}{5} \Rightarrow a^{2} = 36 \approx q = 6$.
we have $ae = 5 \ddagger \frac{6}{5} = a^{2}(1-e^{2}) \Rightarrow b^{2} = q^{2} - q^{2}e^{2}$.
evertice, $e = \frac{6}{6}$, but $b^{2} = a^{2}(1-e^{2}) \Rightarrow b^{2} = q^{2} - q^{2}e^{2}$.
every $b = a \sqrt{1-e^{2}} = 6 \sqrt{1-\frac{25}{36}} = \sqrt{11}$, the $e_{12} + the$
 $2U + pse \frac{1}{36} + \frac{y^{2}}{11} = 1$.
 $\frac{x^{2}}{36} + \frac{y^{2}}{11} = 1$.
 $\frac{x^{2}}{16} + \frac{x^{2}}{11} = 1$.
 $\frac{x^{2}}{16} + \frac{x^{2}}{11} = 1$.
 $\frac{x^{2}}{16} + \frac{x^{2}}{11} = 1$.
 $\frac{x^{2}$$

, q=16e-16 => 9+16=16e $= = \frac{9}{16} + \frac{16}{16}$ (7) $e^2 = \frac{9}{16} + 1 = \frac{25}{16}$ >e=4 , vertices are (+ 9,0) => (410) \$ (-410) \$ dcial (±ae,o) (but ae =) = + q = 5 > (±5,0) id the equation of the hyperbola with vertices of (0, 16) \$ e= 53. 3/2. Since the vertice, are on the y-acces we have $\int_{0}^{1} - \frac{2c^2}{b^2} = 1 \cdot \text{AS} = e_1 \text{ uation} \cdot$ $t (e, tqe) \rightarrow (e, t_6) \rightarrow qe = 6 = 6 = 3$ a(3)=6=559=18=50=28 $p_1 \pm 6) = (0_1 \pm a)_1 \Rightarrow a = 6. \qquad [6 \times \frac{1}{5} = ae_1 \Rightarrow \frac{30}{5} = 10$ $wt_{b^{2}} = q^{2}(e^{2}-1) = 3b^{2} = 3b\left[\frac{25}{9} - 1\right] = 64.$ e reguied epierten y the hyperbola is 1 1t's foci 13 (0, ±9e) = (0, ±10) 52 - 2 = 1 It's too is (Direct) (C Downloaded From StudentDrive.net

Find the epuction of the Ellipse which passes through the point (8) (-sil) I has eccentricity 1/2 with x-asci as it's major ascist Center at the origin. be = q= j the ellipse passing through the 80/2. let 22 + 1/2 = 1 $\Rightarrow \frac{9}{9^2} + \frac{1}{5^2} = (., \Rightarrow) 95^2 + 9^2 = 9^25^2; But 5^2 = 9^2(1 - e^2)$ => 24 - 9a2 CL-eXt 92=0262/ $=>9a^{2}(1-e^{2})+a^{2}\neq a^{2}+a^{2}(1-e^{2})$ => $9a^2 - 9a^2e^2 + a^2 = a^4 (1 - e^2)$. => $a^{2}(9-9e^{2}+1) = a^{2}(1-e^{2})$ $\Rightarrow 9 - 9 e^{2} + 1 \neq 9^{2} (1 - e^{2}) \cdot 1 \text{ But } e^{2} = \frac{12}{3} e^{2} = \frac{2}{35}.$ $=39-/9(\frac{2}{25})+1=9(1-\frac{2}{25})$ $= 39 - \frac{18}{25} + 1 = -92 - \frac{23}{25}$ $=) 2\frac{32}{25} = 9^{2} \left(\frac{23}{25}\right) =) 232 + 25 = 9^{2} = 9^{2} = 575$

$$\frac{9b^{2} + a^{2}}{a^{2}b^{2}} = 1, \implies 9b^{2} + a^{2} = a^{2}b^{2}$$
But $b^{2} = a^{2}(0 - e^{2}) \neq e = \sqrt{25} \Rightarrow e^{2} = \frac{9}{25}$

$$\Rightarrow 9a^{2}(1 - e^{2}) + q^{2} = a^{2} + a^{2}(1 - e^{2});$$

$$\Rightarrow 9a^{2}(1 - \frac{2}{25}] + a^{2} = a^{4}(\frac{93}{25});$$

$$\Rightarrow 9a^{2}(1 - \frac{2}{25}] + a^{2} = a^{4}(\frac{93}{25});$$

$$\Rightarrow 9a^{2}(1 - \frac{2}{25}] + a^{2} = a^{4}(\frac{93}{25});$$

$$\Rightarrow 9a^{2}\left[\frac{907}{25} + 1\right] = a^{4}\left(\frac{23}{25}\right); \Rightarrow \frac{907}{25} + 1 = \frac{93a^{2}}{25};$$

$$\Rightarrow 0^{2}\left[\frac{907}{25} + 1\right] = a^{4}\left(\frac{23}{25}\right); \Rightarrow \frac{907}{25} + 1 = \frac{93a^{2}}{25};$$

$$\Rightarrow 0^{2}\left[\frac{907}{25} + 1\right] = a^{4}\left(\frac{23}{25}\right); \Rightarrow \frac{907}{25} + 1 = \frac{93a^{2}}{25};$$

$$\Rightarrow 0^{2}\left[\frac{907}{25} + 1\right] = a^{4}\left(\frac{23}{25}\right); \Rightarrow \frac{907}{25} + 1 = \frac{93a^{2}}{25};$$

$$\Rightarrow b^{2} = a^{2}(1 - e^{2}) \Rightarrow b^{2} = \frac{232}{25} = a^{2}(1 - \frac{2}{25}] \Rightarrow b^{2} = \frac{932}{25};$$
Hence, the repursed equals q the ethern $1i$

$$\frac{x^{2}}{23^{2}} + \frac{b^{2}}{23^{2}} = 1;$$

$$x^{2} = \frac{23x^{2}}{23x^{2}} + \frac{25y^{2}}{23^{2}} = 1;$$

$$x^{2} = \frac{23x^{2}}{23x^{2}} + \frac{25y^{2}}{23^{2}} = 1;$$

$$x^{2} = \frac{23x^{2}}{25} + \frac{25y^{2}}{23^{2}} = 2;$$

Et
Find the quarking the impedator whose vertices as
$$(\pm 6,0)$$

is one plate directices is $x=4$.
As the vertices of on the x-appin is their middle point is the origin,
the equation is of the type
 $\frac{2^2}{4^2} - \frac{y^2}{5^2} = 1$
as brow it $B = a^2(e^2 - 1)$, vertices are $(\pm 0,0)$ \$ directrices
are simpled by $x=\pm\frac{2}{5}$.
Such as $a=-\frac{2}{5}$,
 $b=-\frac{2}{5}$, $b=-\frac{3}{5}$.
 $b=-\frac{3$

The L distance of a given point from a line
Consider the diagram below. DE is a line with eqn. An + By + C = 0
and slope =
$$-\frac{R}{8}$$
.
Let a point $p(m,n)$ be a point L to bE at Q .
Let a point $p(m,n)$ be a point L to bE at Q .
Let distance PQ .
Construct a line M to BE thru. (m, n) . Called it FG.
Construct a line M to BE thru. (m, n) . Called it FG.
Construct another line M to PQ passing
Brue, the origin, intersecting bE and FC at
S and R respectively.
RS slope is B because it is F $0(0,0)$
Line RS has equation
 $y - 0 = \frac{G}{R}(n-0)$
 $y = \frac{G}{R}x$
Line FG intersect with line RS, so the values of x and y are
 $\frac{B}{R}x + \frac{An}{6} = \frac{Am + Bn}{R}$

 $\Rightarrow \pi \left(\frac{B^{2} + A^{2}}{AB}\right) = Am + Bn$ $\pi = \frac{Am + Bn}{B} \cdot \frac{AB}{A^{2} + B^{2}} = A\left(Am + Bn\right)$ $\pi^{2} + B^{2} + B^{2}$ Subsituting $\pi = A\left(Am + Bn\right)$ in $y = \frac{B}{A} \times 9ives$. $y = \frac{B}{A}\left[\left(A\left(Am + Bn\right)\right) - \frac{A^{2} + B^{2}}{A^{2} + B^{2}}\right] = \frac{B\left(Am + Bn\right)}{A^{2} + B^{2}}$ So point R has coordinates $\begin{cases}A\left(Am + Bn\right) - \frac{A^{2} + B^{2}}{A^{2} + B^{2}}\right]$

(15)

Point S is the intersection of RS with DE.

Rs has eqn $y = \frac{B}{A} \pi$ while DE has eqn. Ant Byte = 0 $\Rightarrow y = -A\pi - C$

At the point of intersection the values of n and y are the same

$$\frac{B}{A}n = -\frac{An-C}{B} \implies \frac{B}{A}n + \frac{An}{B} = -\frac{C}{B}$$

$$n\left(\frac{B}{A} + \frac{A}{B}\right) = -\frac{C}{B}$$

$$n\left(\frac{B^2 + A^2}{AB}\right) = -\frac{C}{B}$$

Subsituting $\mathcal{R} = -\frac{AC}{A2+B^2}$ in $\mathcal{Y} = \frac{B}{A}\mathcal{R}$,

$$y = \frac{B}{A} - \frac{AC}{A2+B^2} = -\frac{BC}{A2+B^2}$$

#5 has contribaded+From StudentDrive.net

$$\frac{(16)}{(16)}$$
The distance RS, using distant formula,

$$d = \sqrt{[(12-11)^2 + ((12-11)^2] + ((12-111)^2)^2 +$$

(17) Example: Find the equation of the line CP passing through the point c(1,2) and making an angle 90° with the line x-J3y+4=0, Find also the 1 distance Soln: The equation x-Jsy+4=0 can be rewritten as -J3y = -x-4 $y = +\frac{\chi}{\sqrt{3}} + \frac{4}{\sqrt{3}}$ $Y = \frac{x}{\sqrt{3}} + \frac{4}{\sqrt{3}}$ \implies the slope of the line $(2-\sqrt{3}y+4=0)$ is $\frac{1}{\sqrt{3}}$. =m. Since the line Cp is 1 to line x-J3y+4=0, the product of their slope = -1. Let the slope the line Cp

$$\frac{1}{\sqrt{3}} M_2 = -1$$

$$M_2 = -\sqrt{3}$$

So the equation of line CP passing thru. (1, 2) is $y = 2 = -\sqrt{3}(x - 1)$ $y = 2 = \sqrt{3}(x - 1)$ $y = 2 = \sqrt{3}(x - 1)$

(19)

$$y = -\sqrt{3} \times + 2 + \sqrt{3}$$

$$\Rightarrow +\sqrt{3} \times + y - 2 - \sqrt{3} = 0 \text{ is the required equation } Cp,$$
The \perp distance $p(h, K)$ from the line $A \times + By + C = 0$
is given by

$$P = \frac{Ah + BK + C}{(A^2 + B^2)^{1/2}}, \quad bu + (h, K) = (0, 0)$$

$$A = \sqrt{3}, B = 1, C = -(\frac{14}{2} + \sqrt{3})$$
So,

$$P = \frac{\sqrt{3} \cdot 0 + 1 \cdot 0 + (2 + \sqrt{3})}{[(\sqrt{3})^2 + 1^2]^{1/2}} = \frac{-(2 + \sqrt{3})}{(3 + 1)^{1/2}}$$

$$= -(2 + \sqrt{3}) = -(1 + \sqrt{3})$$
The required distance $P = -(1 + \sqrt{3})$

$$= +1 + \frac{\sqrt{3}}{2}$$

(19)
E xample : The points
$$(5, 10)$$
 and $(14, -2)$ are opposite
corners of a pavallelogram, of which the origin is a
and the equation of the coordinate of the 4th corner
Soln:
Such a lilogram has opposite
sides are equal and At, then
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 100^{-5}
 10

Solving () and () Similtaneosly,

HAR .
y - 2x = -30.
14y + 2n = 150
15y = 120
y = 8.11.
Put y = 8 in (1) (20)
Solving (i) and (i) I smultaneisly
$8 - 2\pi = -30$
$-2\pi = -30 - 8$
$\mathcal{H} = 19 \mu$
The corner C coordinates are (19,8)//
The Equation of the diagonal from point (5, 10) to
(14, -2) can be obtained using two points formula,
$y - y_i = n - n_i$
$\frac{y-y_{1}}{y_{2}-y_{1}} = \frac{n-x_{1}}{n_{2}-x_{1}}$
$\frac{y-10}{z} = \frac{x-5}{z}$
-2-10 14-5
$\frac{y-10}{-12} = \frac{x-5}{9}$
-12 9
9y - 20 = -12x + 60
9y + 12x = 150
3 Downloaded From StudentDrive.net dia